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Received 6 December 1994 

Abstract. We look for solvable spin-1 SU(3)-madels in lhe seven-parameter manifold of 
mslation- and reflection-invariant Hamiltonians with nearest-neighbour couplings. We prove 
that only discrete solutions ofthe Reshetikhh criterion exist. Therefore the situation here differs 
greatly from the corresponding spin-f SUB) case. where Reshetikhin’s criterion is satisfied for 
any model of the XYZ type. 

1. Introduction 

The spin-4 XYZ-model with Hamiltonian 

N 
H = C H ( x , x  + 1) 

X=l 

and nearest-neighbour coupling 
3 

H ( x , x  + 1) = C J k U k ( X ) U k ( X  + 1) (1.2) 
k=l 

is known to be solvable for all values of the anisotropy parameters Jk, k = 1,2,3 [ 11 in the 
following sense. There is a transfer matrix with a spectral parameter from which one can 
derive an infinite set of commuting conservation laws. The existence of the first conserved 
local operator [2] 

N 

F 3 = ~ [ H ( x , x + I ) , H ( x f 1 , x + 2 ) 1  (1.3) 
X=l 

can be proven directly (cf appendix A) without going through the machinery of inverse 
scattering transform methods [3,4]. The key to this proof is hidden in the commutation 
relation: 

[ I H ( x , x +  1 ~ , H ~ x + 1 , x + 2 ~ 1 , H ~ x , x + 1 ~ + H ( x + 1 , x + 2 ~ 1  

for the building blocks H ( x ,  x + 1) of the Hamiltonian. Q ( x ,  x + 1) is some operator acting 
only on the spins at sites x , x  + 1. Equation (1.4) is Reshetikhin’s criterion [4] which is 

= Q ( X , X + I ) - Q ( X + I , X + ~ )  (1.4) 
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necessary, but not sufficient for the existence of a solution of the Yang-Baxter equations. 
In any case (1.4) is sufficient for the validity of the first conservation law: 

K-H Mutter and A Schmitt 

[H, F31 = 0. (1.5) 
In this paper we are looking for solvable spin-1 models. The manifold of translation- and 
reflection-invariant Hamiltonians [SI that we are going to investigate is constructed from 
the nearest-neighbour couplings: 

between the generators AA@), A = 1,. . . ,8 of the group SU(3). The generators-the 
Gell-Mann matrices-form a complete set of Hermitian and traceless 3 x 3 matrices which 
close under commutation: 

I 

I ~ A , ~ E ]  = ~ ~ A B + ~ X ~ A B C A C .  (1.8) 
c=1 

The structure constants dABc and ~ A B C  are totally symmetric and antisymmetric, 
respectively. They are listed in table 1. From a group-theoretical point of view the nearest- 
neighbour coupling (1.6) is the obvious spin-1 extension of the spin-; XYZ-coupling (1.2). 
Three 0(3)-invariant spin-1 models are known to be solvable in the sense explained above: 

Table 1. The independent, non-vanishing components of fabc and dabc. 

abc f.bc abc dobr obc ddC 

123 1 118 I/& 366 -112 
147 in 146 in 377 -112 
156 -in 157 112 448 -11(24) 
246 in 228 1 1 4  ss8 - 1 1 ~ 5 )  

34s in 256 in 778 -11(2./3) 
361 -in 338 it& 888 - 1 1 ~ 3  
458 4 1 2  344 in 

257 1R 247 -In 668 -11(24) 

678 f i J 2  355 1R 

(i) The SU(3) symmetric LaiSutherland model [6] where the fundamental 
representations 3 of the generators reside at even and odd sites. This model is known 
to be gapless for an antiferromagnetic coupling. It is characterized by the couplings: 

JA = J A = 1 ,  ..., 8. (1.9) 
(ii) The S U ( 3 )  symmetric model where the fundamental representations 3 sit on the 

even sites and the complex conjugate representations 3' sit on the odd sites [7]. It is 
characterized by the couplings: 

JA = J A = 1,3 ,4 ,6 ,8  and JA = - J  A = 2,5,7. (1.10) 

This model has been proven to have a gap [SI for J z 0. 



Solvable spin-1 models in one dimension 2261 

(iii) The model of Kulish and Sklyanin [4,9] is defined by the couplings 

JA = J A =  1.3,4,6,8 and JA = -3J A = 2,5 ,7 .  (1.11) 

This model is known to be gapless for an antiferromagnetic coupling. 
The three models are O(3)-invariant, since the Gell-Mann mahices hz, -As, h7 form 

an O(3) subalgebra. It has been proven recently by Kennedy [lo] that these are the 
only 0(3)-invariant spin-1 models which satisfy the Resbetikhin criterion (1.4). In this 
context it is remarkable to note that the solvability of the spin-; models (l.l), (1.2) is not 
destroyed by breaking the SU(2)  symmetry. Therefore one would expect to find a one- 
(or more) parameter family of spin-1 Hamiltonians of the type (1.6) which are solvable 
in the sense explained above. Surprisingly enough, this is not the case. We will show in 
this paper that there are only eight non-trivial Hamiltonians of the type (1.6) which satisfy 
Resbetikhin’s criterion (1.4). The corresponding couplings JA are listed in table 3. The 
first three Hamiltonians are identical to the known O(3)-invariant ones. 

The outline of the paper is as follows. In section 2 we demonstrate how the Reshetikhin 
criterion selects out the spin-1 Hamiltonians. In section 3 we derive a second criterion which 
bas to be satisfied by a Hamiltonian in order to be completely integrable. In section 4 we 
compare our results with other solvable spin-I models. 

2. The Reshetikhin criterion for spin-1 models 

In this section we are going to investigate how the Reshetikhin criterion (1.4) constrains 
the manifold of anisotropy parameters JA in the nearest-neighbour couplings (1.6). For this 
purpose we have to evaluate the commutators on the left-hand side of (1.4) explicitly by 
means of (1.7). (1.8). This tedious computation leads to the following result: 

[IH(1,2), H(2,3)1. H(1-2) + H(2.311 = Q(l ,2)  - Q(2,3) 
fR(1.2) R(2,3) s(1, 3) + 4  TAsFhA(l)hB(2)hF(3) (2.1) 

ABF 

where 

Q(1,2) = JAJif&chA(l)hA(2) 
ABC 

+&(J; + J: - J: - J,”)(J3 + Js)(k(l)hs(2) + h 3 ( 2 ) b ( l ) )  (2.2) 

R(1,2) & ( J f +  J:- 5:- J,’)(S- J~)(h3(1)h~(Z)-h3(2)h8(1))  (2.3) 

and 

s(1,3) = $J& - & h ) ( J 8  - J3)(h3(1)As(3) - h ( l h ( 3 ) )  (2.4) 

TASF = JA JDJEfAEddCDFfEDB + fCDFdEDB) 
CDE 

- J B  JDJEfBEC(dEDAfCDF + f€DAdCDF). (2.5) 
CDE 

The Reshetikhii criterion (1.4) is satisfied if (2.3). (2.4) and (2.5) vanish identically. From 
(2.3) and (2.4) we get either 

53 = JS or (J4 f J5)’ = (5,  f J7)’. (2.6) 

From (2.5) we get 

T A B F = O  A , B , F = l ,  ..., 8 (2.7) 
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Table 2. The non-trivial equations of (2.7). 

512 nonlinear equations for the eight couplings JA.  It turns out that most of these equations 
are trivially satisfied owing to the properties of the structure constants f . s C  and dABC listed 
in table 1. We are left with 24 non-trivial equations for the anisotropy parameters JA.  These 
remaining equations are listed in table 2. Most of the solutions of these equations lead to 
unitary equivalent Hamiltonians. At the end we found 10 solutions-listed in table 3- 
which are not obviously unitary equivalent. We checked for inequivalence by computing 
the traces: 

tr(H*) = 4N J: = 8N tr2 
A 

= 192N(N - l ) ( fr$ + 32/9N tr4.  (2.10) 

These are also listed in table 3. 
The Hamiltonians HI to H5 are related to the 19-vertex model, which was recently 

investigated by Idzumi ez al [12]. This connection will be discussed in section 4. Models 
H6, H7 and Ha are candidates for new solvable spin-1 models unless they turn out to be 
unitarily equivalent to one of the Hamiltonians H I , .  . . , Hs. Looking at the traces in table 3 
one might suggest that H6 is equivalent to Hs and H7, H8 to H2. However, we did not 
succeed in constructing the corresponding unitary operator. In appendix B we prove that 
Hg is unitarily equivalent to HI. The Hamiltonian H1o is trivially solvable as there is no 
interaction. 

Finally let us point out that the coefficients in (2.5) are completely fixed by the symmetric 
and antisymmetric structure constants d A s c  and fABC of the group SU(3).  We also want 
to emphasize that Reshetibin’s criterion is trivially satisfied for all XYZ Hamiltonians 
(l.l), (1.2) with spin-;. For in the SU(2) case, the symmetric structure constants d A B c  
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Table 3. Solutions of the equations in table 2. A I  and A1 are canstants. 

Model JI Jz J j  J4 Js JG J7 Js trz tr3 tr4 

HI 1 1 1 1 1 1 1 1  4 - 8 1 6  
H2 1 -3 1 1 -3 1 -3 I 16 136 1696 
H3 I - 1  1 1 -1 1 -1 1 4 28 I96 
H4 O O O I 1 1 1 0 2 0 3 2  

Hs 2 -1 1 I -1 1 -1 2 7 53 463 
H7 3 -1 1 1 -3 1 -3 I 16 136 1696 
He 1 -1 3 1 -3 3 - I  1 16 136 1696 
Hg - 1 - 1  1 1  1 1  I 1  4 - 8  16 
Hi0 0 0 AI  0 0 0 0 AI 

rfs I -2 1 I - 1  1 -1 2 7 53 463 

are identically zero and therefore the SU(2) analogue of (2.Q (2.7) is guaranteed for all 
anisotropy paramaters J I ,  Jz, J3. In this respect the spin-f case is very special, which 
explains the large manifold of spin-; models solvable with the Yang-Baxter equations. 

3. A second criterion for the solvability of the Yang-Baxter equation 

Reshetikhin's criterion results from an expansion of the Yang-Baxter equation in the spectral 
parameter of the R-matrix. This equation can be written in the form: 

Riz(A)Ru(X. + IL)RIZ(IL) = Ru(~)Riz(h  + P)R~(X.). (3.1) 
The non-singular R-matrix R(A) with spectral parameter A is a one-parameter familiy of 
linear operators acting in the tensor product space Ck @ C'. Here we are interested in the 
spin-I case, i.e. k = 3. In equation (3.1) we have introduced the operators R&) and 
R.&) which act in Ck @ Ck @ C'. Rlz(h) denotes R(k) acting on the first two factors and 
the identity operator on the third C': 

Riz(A) = R(A) @ 1. (3.2) 
Correspondingly Ru(X.) is defined as 

Ru(A) 1 @ RQ). (3.3) 
A solution of (3.1) is said to be regular if R(0) = 1, and a Hamiltonian with nearest- 
neighbour coupling 

N 
H = C H ( x , x +  1) 

==I 

can be obtained via the expansion 

(3.4) 

Any solution of the Yang-Baxter equation (3.1) therefore leads to an integrable Hamiltonian. 
We now turn to the question of whether or not a given quantum spin Hamiltonian is 

integrable in the sense that it can be obtained from a regular solution of the Yang-Baxter 
equation. Substituting for each operator Rz,z+l(A) its power series in (3.1). we get several 
conditions which have to be satisfied by the coefficients R:i+l, n = 1,2, . . . . 
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The second-order term in the expansion (3.5) is given by 
R f i + ,  = $HZ(x, x + 1) + cz 

with constant cz. The thii-order terms (Ah2) turn out to be 
RI;) - RE) + ;w3(2, 3) - ~ ~ ( 1 , 2 ) )  + m ( 2 . 3 )  - ~ ( 1 . 2 ) )  

= $H(1, 2.1, H(2,3)1, H(1,2) + H(2,3)1. (3.7) 
This leads directly to Reshetikhin's criterion because there must exist an operator Q(x, x+ 1) 
such that 

[[H(1,2), H(2,3)1, H(1,2) + H(2.3)I Q(l,2) - Q(2,3). (3.8) 
This criterion is sufficient for the existence of the first (1.3) and second conserved operator: 

F 4 = C Q ( x , x + l ) + C I [ H ( x , x +  I ) . H ( x +  I,x+2)1,H(x+ 1,x+2) 
N N 

==I  x= 1 

+ 2 H ( x  + 2, x + 3)l (3.9) 
[p3, H] = [F4, H] = 0. (3.10) 
At the fourth order in the expansion (3.5) we do not find any further restriction on the 
Hamiltonian. Terms proportional to A2p2 and Ap3 lead to 
R:L+I = ~ H 4 ( ~ , ~ + 1 ) + f ~ 2 H 2 ( ~ , ~ + 1 ) + ~ H ( ~ , ~ + 1 )  

+ k { H ( x , x  + I), Q(x,x + 1)) + c4 (3.11) 
with constants c3, c4. 

lO(Rg) - RI;)) - $c2(H3(2, 3) + Q(2,3) - H 3 ( l ,  2) - Q(l,2)) 
A new criterion follows from the fifth order (h2p3,Ap4) in the expansion (3.5): 

- ~ ( ~ 5 ( 2 , 3 )  - HV, 2)) - 1 o c m 2 ,  3) - ~ ( ~ 2 1 )  

-5C3(H2(2, 3) - H'(l,2)) - b({H2(2,3), Q(2,3)} - [H2(1,2), Q(l.2))) 
+3H(2,3)Q(2, 3)H(2,3) - 3H(1,2)Q(l. 2)H(1,2) 

= +(1,2,3). (3.12) 

From (3.12) we conclude that there must exist an operator Q ( x ,  x + 1) such that 

The three-point function Z(x, x + 1. x + 2) is defined as 
Z(x,x+ 1,x + 2) = [ H ( x , x  + 1) + H ( x  + 1.x +2), X ( x , x  + 1,x+2)] 

Z ( x , x +  1,x +2) = d ( x , x +  1) - d(x + l ,x+2) .  (3.13) 

+3[Q(x, x + 1) + Q(x + 1,x + 2). [ H ( x ,  x + 1). H ( x  + 1, x + 2)11 
(3.14) 

with 
X ( x , x  + 1.x + 2) = [ H ( x , x  + I),  [ H ( x , x  -I- I), [ H ( x , x  + l) ,  H ( n  4- 1, x "t 2)111 

- [ H ( x  + 1, .x + 21, [ H ( x  + 1, x + 2), [ H ( x  + 1, x + 2), H ( x , x  + 1)111 
+ { I H ( x , x +  l ) ,H(x+I,x+2)j , [H(x,x+ l),H(x+ l,x+2)]}. 

(3.15) 
Equation (3.12) implies that, in general, Reshetikhin's criterion is not sufficient for restoring 
the whole Yang-Baxter equation from the Hamiltonian. We have checked that the 
Hamiltonians H6, H7 and Hg listed in table 3 satisfy the second criterion for integrability. 
We expect that at every odd order in the expansion of the Yang-Baxter equation a new 
criterion appears on the scene. 
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4. Further solvable spin-1 Hamiltonians 

The manifold of spin-1 Hamiltonians is not exhausted by (1.1),(1.6). One can easily 
construct more general Hamiltonians. First of all one could think of adding terms which 
take into account the effect of uniform external fields: 

H‘ = c B3u3(x) 
X=l 

(4.2) 

in the spin-; case. The ansatz for the spin-1 case contains two terms corresponding to the 
two elements 1 3 ,  hg of the SU(3)-Cartan subalgebra. Indeed models with Hamiltonians 
H + H’-where H and H’ are defined through (1.1). (1.6) and (4.1). respectively-have 
been investigated already. In terms of the nearest-neighbour couplings JA in (1.6) and 
the field strength B3, 8 8  in (4.1). the solvable Fateev-Zamolodchikov 1111 model has the 
following form: 

J1 = J3 = -1 2 JZ = +2sinh2w J4 = 56 = 2 -coshw 

J5 = 57 = 5 + coshw Jg = -5  - sinh w 1 1 2 .  2 

B 3 = 0  and B g = & ~ i n h ~ o .  (4.3) 

Model (4.3) is usually written in terms of SU(2) operators where the external field Bg can be 
interpreted as a single-site anisotropy. Fateev and Zamolodchikov succeeded in constructing 
the eansfer matrix for this one-parameter family of Hamiltonians. Note, however, that in 
these models the strength of the external field Bg is related in a very special way to the 
strength of the nearest-neighbour couplings JA.  For w = 0 we find the O(3)-invariant 
model (1.11) of Kulish and Skylanin. 

The model of Fateev and Zamolodchikov belongs to the set of 10 solutions of the 
Yang-Baxter equations for a 19-vertex model, as was recently shown in [12]. By imposing 
certain symmetries (among which is the icerule) on the R-matrices of the 19-vertex model 
the authors of [12] found a complete set of solutions of the Yang-Baxter equations. In 
terms of Gell-Mann matrices the corresponding spin-1 Hamiltonians are listed in table 4 
(B3 = 0 in all models). Model 1 is trivially solvable and includes H ~ o  of table 3. The 
Hamiltonian Ha in table 3 can be obtained from models 2 and 3 for special values of q .  It 
was recently shown in 1131 that they can be solved by mapping them to six-vertex models. 
The LaiSutherland model HI is included in model 4 and the Hamiltonians Hz, H3, HS in 
table 3 correspond to models 7, 5 and 6, respectively. 

AI1 models in table 4 belong to the following class: 

(4.4) 

where the couplings are restricted by J, = .I3* J4 = J6 and .Is = .IT. 

properties in common: 
In terms of standard spin-1 matrices it is easy to show that they have the following 

(i) rotational invariance in the ( x ,  y) plane, 
(ii) invariance under S‘ -Sz, 
(iii) translation invariance and 
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Table 4. Solvable spin-l Hamiltonians LIZ]: Ah are constants and ik = * I  fork = 1.2.3,4.  
Model IO is the Fafeev-Zamolodchikov Hamiltonian (4.3). 

Model I 2  3 4 5 6 7 8  9 

JI  0 0  0 i 2  I 1 1 1 I - &  
J2 A I  0 0 4 - I  -2 -3 - I  Ita 
J3 0 0  0 i l  I 1 1 1 I - &  

J5 0 1  1 i 4  

J6 0 1  1 i4 

J7 0 1  I i4 

J4 0 1  1 i4 1 1 1 %  

JE A1 $cothq 0 i (2 iat i1)  1 2 1 -;-;& 
12&S A3 Scothq 24COthq WI-13) 0 0 0 1 4(5-2&) 

(iv) reflection invariance. 
In order to find further exactly solvable models, one or more of these symmetries must 

An example of a one-parameter family of solvable spin-I models which violates 

(4.5) 

be broken. ' 

reflection invariance has been given by Babelon er al [ 141 (see also [ 151): 

HBW = H + J3sH3s. 

The couplings JA in H (cf ( l . l ) ,  (1.6)) and 538 take the following values: 

JA = 1 A # 3 , 8  JA =cosh y A = 3.8 J38 = -$I sinhy (4.6) 

(4.7) 

Grosse and Raschhofer [161 went one step further by giving up reflection and translation 
invariance. They found a family of solvable spin-1 Hamiltonianst with nearest-neighbour 
couplings 

H ( x . x +  1) =cosh~(h3(X)A3(X+ I)+As(x)A,(x+ 1)) 

N 
H3s = x ( h ( x ) ~ s ( x  + 1) - b.(x)A3(x + 1)). 

X=l 

th sinhy(k.(x)ls(x + 1) - M x ) A 3 ( x  t 1)) 

+ ~ O ~ @ I ( X ) ( ~ I ( X ) ~ ( ~  + 1) + *z(x)Az(x + 1)) 

fcos9z(x)(h&)A& + 1) + A5(x)A5(x + 1)) 

+sin@i(x)(hi(x)Az(x+ 1) -hz(x)l~(x+ I)) 
+ sinMx)(A&)~& + 1) - As(x)Mx + 1)) 
+sin(Mx) - @I(x))(A6(x)A7(X + 1) - b7(x)A6(X t 1)) 

f COS(@&) - @I(x))(.*6(x)k(X + 1) + A7(x)A7(x + 1)) 

(4.8) 

and space-dependent couplings @ ~ ( x )  and &(x).  
Finally, we would like to mention that there exist spin-1 Hamiltonians with exactly 

known ground-state properties [I71 , which were not derived as solutions of the Yang-Baxter 

t We were informed by Raschhofer thaf the Hamiltonian quoted in [16] contains in addition an incorrect boundary 
term. 
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equation. Within the manifold of Hamiltonians (l.l), (4.4) these models are characterized 
by the following constraints on the couplings JA and Be: 

51 = 53 54 = 56 5s = 5, 
2a253=358-2J1 - J z + 2 0 ( 5 4 + J ~ )  

= 2.78 - A B 8  + ~ ( 5 4  i 5s) 

= ~ ( 5 s  - 54) (4.9) 
where Q is a free parameter and u2 = 1. The ground states in these models can be 
represented as a matrix product of individual site states. The authors of [I71 also give an 
additional criterion for the uniqueness of the ground state and the appearance of a gap (the 
‘Haldane scenario’). In terms of our couplings this criterion reads as follows: 

a # O  J 4 + J s # O  J l + J z > O  and J , > O .  (4.10) 
None of the models listed in table 4 satisfies both criteria (4.9) and (4.10). 

5. Conclusions 

In this paper we have investigated the seven-parameter manifold of spin-1 Hamiltonians 
with only nearest-neighbour couplings of the type (1.6). From a group theoretical point of 
view this manifold defines the natural extension of the spin-f XYZ-model to the spin-1 
case. Searching for solutions of the Yang-Baxter equation, we first looked for those spin-I 
Hamiltonians satisfying the ResheWchin criterion (1.4). The eight non-trivial Hamiltonians 
having this property are listed in table 3. 

The first five are already known to be integrable. They are related to special cases of 
the 19-vertex model. The remaining three Hamiltonians are candidates for new solvable 
spin-1 models. They also passed a second criterion for the solvability of the Yang-Baxter 
equation. 

Comparing the spin-f and the spin-1 cases with nearest-neighbour couplings (1.2) and 
(1.6), respectively, we find a marked difference: 

(i) The spin-4 XYZ Hamiltonians (1.2) are known to satisfy the Reshetibin criterion 
for any choice of couplings .Ik? k = 1.2,3. 

(ii) On the seven-parameter manifold of spin-1 Hamiltonians (1.6) there is only a finite 
number of discrete solutions for the Reshetikhin criterion. 

Continuous families of solvable spin-1 Hamiltonians have been constructed in 
[ I  1,12,14] by adding further couplings. These families meet the seven-parameter manifold 
of spin-1 Hamiltonians (1.6) in those points where we find discrete solutions of the 
Reshetibin criterion. 
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Appendix A. The first conservation law and the Reshetikhin criterion 

In this appendix we present a direct proof of (1.5) for the operator (1.3) provided that the 
Reshetikhin criterion (1.4) is satisfied. We split the Hamiltonian into four parts: 

( A 4  H = Hi + Hz + H3 + H4 
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where 
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~j = ~ ( x , x +  I) j = 1 ,2 ,3 ,4 .  (A.2) 
x = j ,  j i 4 .  ... 

The four parts obey the following commutation relations: 

[HI, *d = [Hz, H41 = 0 (A.3) 
[ [ H j , H j + ~ I s H j + H j t ~ l =  Q j  -Qj+l  j =  1,2 ,3 ,4 .  (A.4) 

Q ~ =  ~ ( x , x + 1 )  j = 1 , 2 , 3 , 4 .  (A.5) 

Equation (A.4) is a consequence of Reshekhitin’s criterion (1.4) with 

x=j,j+4. ... 
For any Hamiltonian which one can split into four parts satisfying the commutation relations 
(A.3), (A.4) the operator 

is conserved: 

The commutators in the first term on the right-hand side add up to zero due to (A.4). The 
commutators in the second term add up to zero due to the Jacobi identity: 

(A.@ [ [ H i ,  H21, H3ll + [ [ H z ,  H31, Hi1 + [ [H3,  HI], Hzl = 0 

and due to (A.3). 

Appendix B. Unitary equivalence of H I  and HS 

In this appendix we want to prove that the Hamiltonian 

is unitarily equivalent to the LaiSutherland model 

Let I+), I-) and IO) denote the three eigenstates of the operator A$ 
As[+) = I+) & I - )  = -I-) and hslO) = 0. 

It is useful to define permutation operators PAB acting on nearest-neighbour states of type 
IA) and lB)  where A, B = +. -, 0. In terms of the Gell-Mann matrices, these permutations 
have the following form: 

N 

P+- = ; C(A,(X)A~(X + 1) + A~(x)A~(~ + 1)) (B.3) 
X=l 
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P-0 = !j C(h6(X)h6(X + 1) + h7(~)h7(~ + 1)) 

2275 

(B.5) 
N 

X=l 

N 
P++ + P-- + P w  = x ( h 3 ( X ) h 3 ( ~  + 1) + h ~ ( x ) h ~ ( x  + 1)) + 4. (B.6) 

Here we have assumed that the three species I+), I-) and 10) are bosons. Fermions can be 
described by the transformation 

X=I 

PAA 4 -PAA.  

Following an argument €room Sutherland 161 we now apply three unitary transformations 
U I ,  U2 and U3 to the Hamiltonian 

(i) Transformation U I :  For N even, proceed along the chain and multiply the state 
function at each even numbered site by -1  if the state is 10) and by + I  if the state is I*). 
For N odd we multiply the state function at each odd site by -1 and +1 if the state is 10) 
and I&). respectively. In both cases the effect of this transformation tums out to be 

H - t  U I H U ; ' = H - ~ ( P + O + P ~ ) .  (B.8) 

H -+ U2UlHU;'U;' = - H + 2 P + - .  

(ii) Transformation U,: Change the bosons into fermions by using a Jordan-Wigner 

(B.9) 

transformation: 

(iii) Transformation U,: Multiply the state function by a function which is totally 
antisymmetric in all objects: 

H + U3UzUl HU;'U;'U;I = H - 2P+-.  (B.lO) 

From (B.3) we see that HI and H9 are unitarily equivalent: 

U ~ U Z U ~ H I U ; ' U ~ ~ U ; I  = H9. (B. l l )  
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